ON THE GROUPS OF ORDER p^m

WHICH CONTAIN OPERATORS OF ORDER p^{m-2*}

 \mathbf{BY}

G. A. MILLER

Burnside has considered the groups of order p^m (p being any prime) which contain an invariant cyclic subgroup of order p^{m-2} .† Those in which a cyclic subgroup of order p^{m-2} is transformed into itself by an abelian group of order p^{m-1} and of type (m-2,1) have also been studied.‡ The main object of the present paper is to determine the remaining groups of order p^m (m>4 when p is odd, and m>5 when p=2) which contain a cyclic subgroup of order p^{m-2} . As such a subgroup must be transformed into itself by p^{m-1} operators of the group of order p^m , \S each of these groups which does not come under one of the cases already considered must include the non-abelian group H of order p^{m-1} which contains p cyclic subgroups of order p^{m-2} . The group of isomorphisms (I) of H is of order $p^{m-1}(p-1)$ and contains invariant operators of order p^{m-3} when p is odd and of order p^{m-4} when p=2. \parallel

Let P_1 and P_2 represent two independent operators of H whose orders are p^{m-2} and p respectively and let $P_1^{p^{m-3}} = P_3$. Suppose also that P_2 has been so chosen that $P_2^{-1}P_1P_2 = P_3P_1$. The group of cogredient isomorphisms (I_2) of H is of order p^2 and of type (1, 1). When p is odd I includes an operator (t_1) of order p such that

$$t_1^{-1}P_1t_1 = P_2P_1, \quad t_1^{-1}P_2t_1 = P_2.$$

Since t_1 permutes the p cyclic subgroups of order p^{m-2} in H cyclically, while some of the operators of I_2 are commutative with each operator of only one of these subgroups, the group generated by I_2 and t_1 is the non-abelian group of

^{*} Presented to the Society (Chicago) January 3, 1902. Received for publication December 2, 1901.

[†] BURNSIDE, Theory of groups of finite order, 1897, p. 75.

[†] Transactions of the American Mathematical Society, vol. 2 (1901), p. 259.

[§] BURNSIDE, Proceedings of the London Mathematical Society, vol. 26 (1895), p. 209. Also, Frobenius, Berliner Sitzungsberichte (1895), p. 173.

^{||} With respect to the non-cyclic group of order p^2 , when p is odd, or p^3 , when p is even, all the operators of a division have the same pth power or p^2 th power respectively. Cf. Bulletin of the American Mathematical Society, vol. 7 (1901), p. 350; J. W. Young, Transactions of the American Mathematical Society, vol. 3 (1902), p. 189.

order p^3 which contains no operators of order p^2 . As this group contains only p of the p^{m-3} invariant operators of I it follows that I contains the non-abelian subgroup of order p^{m-1} which includes no operator of order p^{m-2} but has an invariant operator of order p^{m-3} , whenever p is odd. This subgroup of order p^{m-1} is invariant under I according to Sylow's theorem. It is not difficult to see that the same group is invariant under the group of isomorphisms of the abelian group of type (m-2,1).

§1. Determination of the groups when p is even.

When p=2, I is of order 2^{m-1} and its subgroup (I_2) which is composed of the group of cogredient isomorphisms of H is the four-group. It includes an operator t_2 of order 2 such that

$$t_2^{-1}P_1t_2 = P_1^{-1}, t_2^{-1}P_2t_2 = P_3P_2.$$

This operator is commutative with each operator of I_2 since it is evidently commutative with the operator (t_2') which transforms P_1 into itself and P_2 into P_3P_2 . Hence I contains the abelian group of type (m-4,1,1) and all the operators of this subgroup transform P_1 into a power of itself. An additional generator of I is t_1 as defined above. It should however be observed that t_1 is commutative with only p^{m-3} operators of I when I when I when I is commutative with I when I is odd.

It was observed above that I contains an invariant operator of order p^{m-4} when p=2. Let t_3 represent the operator of order 2 which is a power of this invariant operator. From the properties mentioned above it follows that

$$t_1^{-1}\,t_2^{'}\,t_1=t_3\,t_2^{'}, \qquad t_1^{-1}\,t_2\,t_1=t_2.\,*$$

Hence, when p=2, I contains a subgroup of type (m-4,1) which is composed of its invariant operators. It is completely defined by the fact that it contains such a subgroup and two non-commutative operators (t_1, t_2') of order 2 with properties noted above.

We proceed to determine all the groups of order 2^m which contain H and permute its cyclic subgroups of order 2^{m-2} . Such a group must transform H according to a subgroup of order 8 in I, which includes the group of cogredient isomorphisms of H. As all the operators of orders two and four contained in I are included in its subgroup of order 32 there are just four such subgroups of order 8 and each of them is simply isomorphic with the octic group.† They are generated by I_2 and the following four operators of order two respectively:

$$t_1, \quad t_1 t_2, \quad t_1 t_2' t_4, \quad t_1 t_2 t_2' t_4,$$

^{*}These equations may be verified by observing that each member transforms P_1 and P_2 in the same way.

[†] Cf. PIERPONT, Annals of Mathematics, ser. 2, vol. 1 (1900), p. 140.

where t_4 is an operator of order 4 in the group generated by an operator of order 8 in I.

The group (G_1) generated by H and t_1 contains just 2^{m-4} invariant operators and is conformal with the abelian group of type (m-2,1); i. e., it contains 2^{a+1} operators of order 2^a (1 < a < m-1) and 7 of order 2. Its four cyclic subgroups of order 2^{m-2} involve, in pairs, the two cyclic subgroups of order 2^{m-3} contained in H. It follows directly from a known theorem that there is no other group which transforms H in the way in which G_1 transforms it.*

The group (G_2) generated by H and t_1t_2 contains only 2 invariant operators. Its operators not contained in H are composed of 2^{m-3} operators of order 2 and 3.2^{m-3} of order 4. Since $P_1^{-2}t_1t_2P_1^2=P_3P_1^{-4}t_1t_2$ there can be no other group which transforms H in the same manner as t_1t_2 does. Let G_2' represent the group generated by H and $t_1t_2't_4$. Its 2^{m-3} invariant operators are generated by P_1^2 and it is conformal with G_1 . As it contains an abelian subgroup of type (m-2,1) it is not necessary to consider this group here. There is another group (G_3) which transforms H in the same way as G_2' does and contains four cyclic subgroups of order 2^{m-2} . In G_3 all of these contain the same subgroup of order 2^{m-3} while this is not the case in G_2' . Moreover, G_3 contains no operator of order 2 besides those in H and it has no abelian subgroup of type (m-2,1).

It remains to examine the case when H is transformed in the same way as $t_1t_2t_2't_4$ transforms it. The group (G_4) generated by H and $t_1t_2t_2't_4$ contains only two invariant operators. Besides H it contains 2^{m-2} operators of each of the orders 2 and 8. In the other group (G_5) which transforms H in the same manner as G_4 does, there are 2^{m-2} operators of each of the orders 4 and 8 besides H. There cannot be more than two such groups, since H has only two invariant operators under G_4 . Hence there are just five groups of order 2^m which contain operators of order 2^{m-2} and in which no cyclic subgroup of this order is either invariant or transformed into itself by an abelian group of order 2^{m-1} . It may be of interest to observe that the group of type (m-2,1).

§ 2. Determination of the groups when p is odd.

When p > 2 the two sets of p conjugate subgroups in H are permuted by I according to an intransitive substitution group of order $p^2(p-1)$, which is obtained by establishing a (p, p) isomorphism between two metacyclic groups of degree p, just as in the case of the abelian group of type (m-2, 1).† The

^{*}Transactions of the American Mathematical Society, vol. 2 (1901), p. 265. The latter part of this theorem clearly assumes that p is odd. It remains true, however, when u_1 is a power of r_1 and the order of r_1 is greater than 4. The general method explained in §2 of the article cited is employed in the present article.

[†] l. c., p. 261.

groups under consideration must transform the operators of H according to a subgroup of I, which includes I_2 , is of order p^3 , and permutes the p cyclic subgroups of highest order in H. It is evident that there are just p such subgroups. They are non-abelian and p-1 of them include operators of order p^2 .

To prove that these p-1 subgroups are conjugate under I it seems desirable to employ some additional equations, which we proceed to develop. Let t represent an invariant operator of order p^{m-3} in I and let $t^{p^{m-5}} = t_4$. It may be assumed without loss of generality that $t_4^{-1}P_1t_4 = P_1^{1+p^{m-4}}$ and $t_4^{-1}P_2t_4 = P_2$. There are p(p-1) conjugates of t_1t_4 under I. They are

$$t_{a\beta}^{-1}(t,t_{A})t_{a\beta}$$
 $(a=1,2,\cdots,p-1;\beta=1,2,\cdots,p)$

where

$$t_{a\beta}^{-1}\,P_{1}t_{a\beta}=P_{1}^{a}, \qquad t_{a\beta}^{-1}\,P_{2}t_{a\beta}=P_{3}^{\beta}\,P_{2}.$$

It follows that

$$(A) (t_{a\beta}^{-1}t_1t_4t_{a\beta})^{-1}P_1^a(t_{a\beta}^{-1}t_1t_4t_{a\beta}) = P_2P_1^{a+ap^{m-4}+\beta p^{m-3}}.$$

On the other hand

(B)
$$(t_1 t_4)^{-n} P_1^a (t_1 t_4)^n = P_2^{an} P_1^{a(1+p^{m-4})^n + np^{m-3}a(a-1)/2}$$

The right hand members of (A) and (B) are the same only if

$$n=1+\beta p$$
, $a=1$.

Hence not more than p of the p(p-1) conjugates of t_1t_4 are powers of t_1t_4 , i. e., the operators $t_{a\beta}$ transform $\{t_1t_4\}$ into at least p-1 conjugate groups. It remains to observe that only one of these groups can be in any one (I_3) of the p-1 subgroups of order p^3 under consideration.

The last fact follows readily from the isomorphism between I and the given intransitive substitution group of order $p^2(p-1)$. In this isomorphism I_3 corresponds to the subgroup of order p^2 and $\{t_1t_4\}$ corresponds to an invariant subgroup of order p. The I_3 which includes t_1t_4 can therefore involve only p of the conjugates of t_1t_4 under I. In other words, the conjugates of t_1t_4 are found in p-1 conjugates of I_3 .

Since these p-1 subgroups of order p^3 are conjugate under I it is necessary to consider only two cases, viz.: the one in which H is transformed according to one of these p-1 subgroups and the other in which H is transformed by the groups in question according to the subgroup of order p^3 in I, which includes no operator of order p^2 . In the former case there are only p^{m-4} invariant operators while each of the groups which belongs to the latter contains p^{m-3} such operators. We proceed to prove that there is only one group (G_1) which comes under the former case, while there are two (G_2, G_2') which come under the

latter. It is not difficult to see that the last one of these groups contains a subgroup of type (m-2, 1).

Let t_5 be an operator of order p^2 which transforms H in the same way as t_1t_4 does and suppose that it has been so chosen that $t_5^2 = P_2$. The group generated by H and t_5 contains no operator of order p besides those of H. That this is the only group in question which transforms H in the same way as G_1 does may be proved in exactly the same manner as the theorem to which reference is made in the last footnote. It may be observed that G_1 is conformal with the abelian group of type (m-2, 2).

The group (G_2) generated by t_1 and H is conformal with the abelian group In fact, it includes the abelian group of type of type (m-2, 1, 1). (m-3,1,1) since t_1 is commutative both with P_1^2 and with P_2 . The other group G_2 , which transforms H in the same manner as G_2 does, may be obtained by the method mentioned in the last footnote. Since it includes the abelian group of type (m-2, 1) it will not be considered here. Hence, there are two and only two groups of order p^m (p > 2 and m > 5) which include operators of order p^{m-2} without containing either an invariant cyclic subgroup of this order or an abelian subgroup of type (m-2, 1). These two groups are conformal respectively with the abelian groups of type (m-2, 2) and of type (m-2,1,1). When m=5 the group G_1 evidently contains an invariant cyclic subgroup of order p^{m-2} ; hence there is only one group of order p^5 (p > 2) which contains operators of order p3 without containing either an invariant cyclic subgroup of this order or the abelian group of type (3, 1).